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Synthesis of a 2-indolylphosphonamide derivative with
inhibitory activity against yersiniabactin biosynthesis
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Abstract—We report the synthesis of an adenosyl-derived indolylphosphonamide analogue of salicyladenosylmonophosphate
involved in the plague and tuberculosis siderophore biosyntheses. The compound proved to be a potent inhibitor of the Yersinia
pestis salicylate adenylation domain YbtE catalyzing the initial step of yersiniabactin biosynthesis.
� 2007 Elsevier Ltd. All rights reserved.
Siderophore biosynthesis is the most common mecha-
nism developed by bacteria, including numerous human
pathogens, to extract iron from extracellular sources.1

Among siderophores, salicyl-capped peptides such as
mycobactins 12 and yersiniabactin 23 produced by the
etiologic agents of tuberculosis (Mycobacterium tubercu-
losis) and plague (Yersinia pestis), respectively, have
drawn substantial attention as important virulence fac-
tors.4 Indeed, siderophore biosynthesis by nonribosomal
peptide synthetases has been recognized as decisive for
virulence development and survival of these bacteria in
the host, pointing out the high therapeutic potential of
siderophore synthesis inhibition. In this sense, hydrolyt-
ically stable phosphonate 4 as well as sulfamate analogs
5–7 of salicyladenosylmonophosphate (salicyl-AMP) 3,
the initial substrate for nonribosomal synthesis of 1
and 2 have been recently synthesized.5 While the two
b-keto derivatives 4 and 5 did not inhibit significantly
the growth of Mycobacterium tuberculosis cultivated
under iron-limiting conditions,5c,d acylsulfamate 65a–c

and sulfamide 75c showed MIC50 below 0.1 lM. These
differences in activity were very recently correlated with
the ability of the linker between the adenosyl and
hydroxyphenyl moieties to adopt a planar geometry
through a hydrogen-bonding arrangement as shown
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for the natural substrate 3.5d We have thus initiated
the synthesis of bicyclic hetero-arylic compounds as
stable rigid analogs of salicyl-AMP and report here
our efforts to synthesize the phosphorylated indolyl
derivatives 8 and 9.

We envisioned that indolylphosphonamidate 8 could be
obtained as shown in Scheme 1, using an Atherton–
Todd reaction6 between 5-deoxy-5-amino-adenosine 10
and a protected indolyl-H-phosphonate derivative as a
key step. The Atherton–Todd reaction, involving a
nucleophilic attack on a phosphorochloridate resulting
from the CCl4-mediated oxidation of a H-phosphonate
precursor, is recognized as a method of choice for the
preparation of phosphonamidates.6 We anticipated that
only the more nucleophilic 5-amino group in 10 would
react, thus allowing us to work with unprotected 5-ami-
no-5-deoxyadenosine. R1 and R2 were chosen among a
series of protecting groups that are labile under mild
basic conditions, as it is well known that the phosphon-
amide bond is sensitive to acidic conditions.7

The preparation of indolyl partner 12 from N-boc-indole
(Scheme 2) initially met with difficulties. In a first series
of experiments, the 2-lithio-indolyl derivative resulting
from nBuLi deprotonation of N-boc-indole was trapped
by addition of freshly prepared chloro(diisopropyl-
amino)methylphosphite 118 at �50 �C. The reaction
was allowed to proceed for 15 min at this temperature,
then quenched with a saturated NH4Cl aqueous solution

mailto:p.bisseret@uha.fr


N
R1

P
O

OR2

N

N

ON
H

OH OH

N

N

NH2

N
R1

P
O

H

OR2
N
R1

N

N

ONH2

OH OH

N

N

NH2

Atherton-Todd Phosphitation 

10
8

Deprotection

Scheme 1. Retrosynthetic scheme for the preparation of 8.
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Scheme 2. Reagents and conditions: (a) nBuLi, �65 �C, 75 min; (b) �50 �C, 11, 2 min; (c) HCl aq (2 N), 10 min, 20 �C, 45%.
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before the temperature was raised to room temperature.
Under these conditions we obtained 12 contaminated
with ca. 25% of diisopropylamino(methyl)phosphorami-
dite (due to the hydrolysis of 11) in a maximum estimated
yield of 30%. In subsequent experiments, prolonged reac-
tion times up to 30 min or 3 h at �50 �C did not lead to
any improvement.9 An acceptable reproducible yield of
95% pure 12 as confirmed by NMR10 could be finally
obtained by shortening the reaction time to 2 min and
transferring the reacting medium via cannula into a
2 N HCl aqueous solution.

The Atherton–Todd coupling was then performed using
freshly prepared H-phosphonate 12 and unprotected 5-
amino-5-deoxyadenosine 10 as indicated in Scheme 3.
The reaction proceeded as expected and yielded phos-
phonamidate 13. Finally, simultaneous removal of the
boc protecting group and hydrolysis of the phospho-
namidate ester were possible under smooth conditions
by action of LiOH. After tlc purification (SiO2,
EtOAc/MeOH/H2O (3:1:0.1) as eluent), the free indo-
lylphosphonamide derivative 8 was obtained in >95%
purity as judged by NMR.10

For comparison purposes, we also attempted without
success to prepare phosphonate 9. Extension of Ather-
ton–Todd conditions using commercial 2,3-O-isopro-
pylidene-adenosine as a starting material was not
successful and only complex mixtures were obtained.11

We also tried to use the copper-mediated coupling meth-
od of H-phosphonate and aryl-iodonium derivatives
that we recently described.12 Although the required
new indolyliodonium salt 14 was successfully prepared
from commercial N-boc-indolylboronic acid under the
conditions described by Ochiai et al. (Scheme 4),10,13 it
appeared too unstable to survive the coupling condi-
tions and, at best, only traces of coupling products with
H-adenosylphosphonate 1512 were obtained after 4 h at
30 �C.
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Scheme 3. Reagents and conditions: (a) CCl4, Et3N, molecular sieves, 5-deoxy-5-amino-adenosine 10, rt, 2 h, (45%); (b) LiOH, 3 h, 40 �C, 60%.
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As phosphonamidate 8 is expected to be at least as inter-
esting as 9, based on observations in the acylsulfamide/
acylsulfamate series,5c,d synthesis of 9 was not further
pursued. The inhibitory activity of phosphonamidate 8
was tested with the salicylate adenylation domain YbtE
of Y. pestis and showed an IC50 of 6 lM.14

In conclusion, we have synthesized an indolylphospho-
namidate 8 as a new lead compound that exhibits high
inhibitory activity against a salicylation enzyme
involved in virulence-associated siderophore biosynthesis.
To the best of our knowledge, this is the first salicyl-
AMP analogue featuring a phosphonamide junction
showing activity. Compound 8 was straightforwardly
synthesized by direct coupling of unprotected 5-deoxy-
5-amino-adenosine to indolyl-H-phosphonate 12 under
conditions that are classically used for Atherton–Todd
reactions. Application of our approach to the prepara-
tion of other adenosyl/indolyl derivatives as potential
inhibitors of salicyl-capped siderophore biosynthesis is
in progress.
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